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Abstract

A novel method of calculating dynamic stability derivatives using Computational
Fluid Dynamics is presented. This method uses a non-linear, reduced-frequency ap-
proach to simulate the response to a forced oscillation using a single frequency com-
ponent at the forcing frequency. This provides an order of magnitude improvement
in computational efficiency over similar time-dependent schemes without loss of gener-
ality. The reduced-frequency approach is implemented with an automated Cartesian
mesh scheme. This combination of Cartesian meshing and reduced-frequency solver
enables damping derivatives for arbitrary flight condition and geometric complexity
to be efficiently and accurately calculated. The method is validated for 3-D reference
missile and aircraft dynamic test configurations through the transonic and high-alpha
flight regimes. Comparisons with the results of time-dependent simulations are also
included.

1 Introduction

Computational Fluid Dynamics (CFD) is increasingly being used to both augment and
create an aerodynamic performance database for aircraft configurations. This aerodynamic
database contains the response of the aircraft to varying flight conditions and control sur-
face deflections. CFD currently provides an accurate and efficient estimate of the static
stability derivatives, as these involve a steady-state simulation about a fixed geometry. The
calculation of higher-order dynamic stability derivatives for general configurations and flow
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conditions is more costly however, requiring the simulation of an unsteady flow with mov-
ing geometry. For this reason the calculation of dynamic stability derivatives using CFD
has been limited to either estimating the values at a handful of (hopefully) critical points
and extrapolating to cover the range of interest, or using restrictive approximate methods.
The need for more efficient, general CFD methods is especially acute as predicting dynamic
derivatives with traditional methods, such as wind tunnel testing, is expensive and difficult.
As aircraft designs continue to evolve towards highly-maneuverable unmanned systems, high-
fidelity aerodynamic databases including dynamic derivatives are required to accurately pre-
dict performance and develop stability and control laws. CFD can provide a key technology
for modeling the dynamic performance of these advanced systems, with their extreme rate
changes and flight conditions.

The current work presents a novel method for calculating dynamic stability derivatives
which reduces the computational cost over traditional unsteady CFD approaches by an
order of magnitude, while still being applicable to arbitrarily complex geometries over a
wide range of flow regimes. Previous approaches can be broadly categorized as general
methods which simulate an unsteady motion of the geometry (e.g., a forced oscillation)[1–
5], or those which reduce the problem complexity in some manner with an attendant loss
of generality. The former methods provide accurate results for arbitrary geometries and
flow conditions, however they require a time-dependent moving-body flow simulation, which
uses roughly an order of magnitude greater computational time than a static, steady-state
simulation. Even predicting one of the roll, pitch, or yaw damping coefficients over the
full flight regime is prohibitively expensive. Methods which compute the pitch damping
using a lunar coning motion[6–8] can reduce the unsteady, moving-geometry problem to
a static, steady-state computation, albeit in a non-inertial reference frame. While these
methods provide computational efficiency, they are only applicable to longitudinal damping
and require approximating (or ignoring) other damping coefficients. Weinacht[9] extended
this approach to predict pitch and yaw damping, however it is only valid for axisymmetric
bodies. Weinacht and Sturek[10] demonstrate roll damping calculations in a non-inertial
frame for finned projectiles, which also reduces the problem to a steady-state flow solution,
however this approach is only valid at α = 0.0◦. Linearized methods[11, 12] likewise greatly
reduce the required computational cost, however, with a loss of accuracy and a reduced range
of applicable flow conditions and/or geometric complexity.

A time-dependent simulation supports a continuum of frequencies up to the limits of
the spatial and temporal resolution. The primary thesis of this work is that the response
to a forced motion can often be represented with a small, predictable number of frequency
components without loss of accuracy. By resolving only those frequencies of interest, the
computational effort is significantly reduced so that the routine calculation of dynamic deriva-
tives becomes practical. Such “reduced-frequency methods” have recently been extended to
retain the non-linearity of the original governing equations by Hall et al.[13, 14] for appli-
cation to 2-D turbomachinery cascades. McMullen et al.[15, 16] followed this work, also
focusing on 2-D turbomachinery flows. The current implementation uses this same non-
linear, frequency-domain approach and extends the application to the 3-D Euler equations.

The current work uses a Cartesian, embedded-boundary method[17] to automate the
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generation of dynamic stability derivatives. The Cartesian method provides an efficient and
robust mesh generation capability which can handle an arbitrarily-complex geometry descrip-
tion. A quality water-tight surface triangulation required for Cartesian mesh generation can
be obtained directly from a CAD representation of the geometry[18]. This, combined with
the Cartesian embedded-boundary method provides a robust and automatic mesh genera-
tion infrastructure which can be utilized through the design process. This meshing scheme
has recently been combined with a parallel, multi-level scheme for solving time-dependent,
moving-geometry problems, including a generalized rigid-domain motion capability[19]. This
Arbitrary Langrangian-Eulerian (ALE) rigid-domain motion scheme provides the foundation
upon which the current reduced-frequency method is implemented. The Cartesian methodol-
ogy has been demonstrated as an efficient, robust method for automatically generating static
stability derivatives[20, 21], and the current work extends this to include the prediction of
dynamic derivatives.

This paper begins with a brief review of dynamic stability derivatives (Sec. 2), followed
by a description of the reduced-frequency approach and implementation (Sec. 3). Section 4
presents the results of several validation cases using reference dynamic test configurations for
both missile and aircraft geometries. These validation cases include examples of pitch, yaw,
and roll damping calculations using the reduced-frequency method, through both transonic
and high-angle-of-attack flight regimes. The computed results are compared against wind-
tunnel and ballistic-range data, as well as results computed using a time-dependent method.
A detailed cost comparison of the reduced-frequency method is also included. Lastly, the
main results of this work are summarized and a choice of future research topics is presented.

2 Dynamic Derivatives

The aerodynamic characteristics of an aircraft can be described by the force and moment
coefficients about the body axes; the axial, normal, and lateral force coefficients (CA, CN , CY ),
and the roll, pitch, and yaw moment coefficients (Cl, Cm, Cn). In most cases it is sufficient to
define these coefficients as functions solely of the flight conditions and aircraft configuration,

Cj = Cj

(
α, β, M∞, h, δi, p, q, r, α̇, β̇

)
(1)

where j represents each of the individual force and moment coefficients, h is the altitude,
δi represents any configuration-dependent information such as control surface settings, and
p,q, and r are the rotation rates about the body axes.∗ Each individual coefficient can be
broken into two parts: a so-called static portion (subscript s) which depends only on the
non-rotating parameters, and a dynamic portion (subscript d) which depends on both the
rotational and non-rotating parameters.

Cj = Cjs (α, β, M∞, h, δi) + Cjd

(
α, β, M∞, h, δi, p, q, r, α̇, β̇

)
(2)

∗It is assumed that the rotation rates are suitably non-dimensionalized.
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The focus of the current work is a method of calculating both the static and dynamic portion
of the force and moment coefficients concurrently.

In general the aerodynamic coefficients are non-linear functions of all of the independent
parameters, however, in many cases this can be simplified so that a linear superposition of
the individual effects of each parameter can be assumed, i.e.

Cjd
= Cjd

(α, β, M∞, h, δi, p) + Cjd
(α, β, M∞, h, δi, q) + . . . (3)

Further, each individual effect is assumed to be due to a linear variation of that parameter,
for example the roll variation is given by

Cjd
(α, β, M∞, h, δi, p) = Cjo (α, β, M∞, h, δi) +

∂Cjd

∂p
(α, β, M∞, h, δi) ∆p (4)

Notice that these dynamic derivatives are solely functions of the non-rotating parameters,
similar to the static coefficients. In this example, the roll damping derivative is commonly
referred to as ∂Cl/∂p ≡ Clp , with similar notation for the other axes and rates. In many
cases the base state coefficients Cjo are equivalent to the static aerodynamic coefficients, Cjs .

Experimentally, the two tools which are commonly used to provide dynamic data are
the rotary-balance and forced-oscillation tests. While it is difficult to determine each of
the individual dynamic derivatives in the general case, as the rotation about the body and
wind axes are coupled, there is a large legacy of methodology for using data from these
tests in linearized dynamic models such as described above (cf. Kalviste[22]). The initial
focus of the current work is to simulate forced-oscillation testing using a reduced-frequency
method, so that the results can be used directly within existing modeling procedures. This
is seen as a necessary first step; before more complicated uses for CFD are entertained it
must become an everyday tool for evaluating dynamic effects in the most common cases,
similar to the manner it is currently being used to evaluate the static effects. A longer-term
focus is to develop CFD methods which can compute the dynamic derivatives directly in
the general case, and to extend the methods to provide efficient tools in non-linear flight
regimes where the traditional methods begin to fail, and obtaining data is extremely difficult
(cf. Refs. [23, 24]).

3 Reduced-Frequency Method

The reduced-frequency method is derived from a general time-dependent scheme. An
ALE rigid-domain motion approach is used in the current application to simulate a forced mo-
tion. The details of this time-dependent ALE scheme with a Cartesian embedded-boundary
method are provided in [19], and a brief overview is given here. The time-dependent equa-
tions are

∂Q

∂t
+ R (Q) = 0 (5)

where t is the physical time, Q is the vector of conserved variables, and R (Q) is an appro-
priate numerical quadrature of the flux divergence, 1

V

∮
S
f · ndS. This work uses an inviscid
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flux vector

f · n =


ρun

ρunu + pn
ρune + pu · n

 (6)

where
un = (u− uΩ) · n

is the velocity relative to the moving boundary, and uΩ is the velocity of the moving domain.
Following Hall et al. [13, 14], both the conservative variables and R (Q) are assumed to

be periodic functions of time (with frequency ω), and approximated with a finite Fourier
series

Q (x, n∆t) ≈
(N−1)/2∑

k=−(N−1)/2

Q̂k (x) eikωn∆t

R (Q, n∆t) ≈
(N−1)/2∑

k=−(N−1)/2

R̂k (Q) eikωn∆t

where Q̂k and R̂k are complex Fourier coefficients, and i =
√
−1. As a result of this

approximation Q can now only support a reduced set of frequencies, namely ω and the
harmonics of ω. Since R is a non-linear function of Q, the Fourier coefficients R̂ remain
a function of Q. Also, since Q and R are real, the Fourier coefficients of the negative
wavenumbers are complex conjugates of their corresponding positive wavenumber.

The sampling rate ∆t is chosen so that the functions are periodic over N samples, i.e.
ω = 2π

N∆t
where T = N∆t is the period. The Fourier coefficients are thus evaluated using

standard Fast Fourier Transform (FFT) algorithms. Substitution of the Fourier expansions
for Q and R into the time-dependent equation, Eq. 5, gives

ikωQ̂k + R̂k (Q) = 0 (7)

which form a set of N independent equations due to the orthogonality of the Fourier modes.∗

The solution procedure involves first performing an inverse Fourier transform to construct
the N samples of Q from Q̂k. These samples are used to construct N samples of R(Q),
which are then transformed into the Fourier coefficients R̂k. Equation 7 is then iterated to
convergence by adding a pseudo-time derivative dQ̂k/dτ . The source terms that appear in
the discretization of Eq. 7 are treated semi-implicitly so that the same CFL condition used
for the static, steady-state flow solver can be utilized for the pseudo-time advance of the
frequency-domain components.

The reduced-frequency approach outlined above has several convenient features. First, it
can be applied to any set of time-dependent equations – inviscid, viscous, Reynolds-averaged
turbulence model, etc. – without requiring any special procedures other than a discrete
Fourier transform. The same non-linear operator R(Q) from the time-dependent scheme is

∗N independent equations for the real and imaginary parts of the positive wavenumbers. The equations
for the complex conjugate are redundant.
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computed. Secondly, the same convergence acceleration procedures that are common with
static, steady-state solvers, such as local timestepping, multigrid, etc., can be utilized to
solve Eq. 7. In the current work all of the existing infrastructure from the parallel, multi-
level Cartesian solver developed for steady-state[25], and unsteady dual-time schemes[19]
has been re-used in the frequency-domain solver with only minor modifications.

The current approach involves simulating the response to a prescribed periodic motion
using an invsicid scheme. The simulations of the base state for these flowfields (steady-state
simulations without a prescribed motion) usually result in a time-invariant flowfield, so that
all of the unsteadiness in a forced oscillation simulation is due to the prescribed motion. The
first mode of Q(t) is thus identical to the forcing frequency. Further, in an inviscid simulation
numerical dissipation is the only mechanism to transfer energy between modes. The numeri-
cal dissipation is much less effective than physical kinematic viscosity or turbulence, so that
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Figure 1: Variation of normal force coefficient with
angle of attack for oscillating NACA 0012. (M∞ =
0.755, α(t) = 0.016 + 2.51 sin (ωt)). The time-
dependent simulation includes the initial transient por-
tion of the calculation. Experimental data from [26].
The reduced-frequency calculations include one (N =
3) and two (N = 5) frequency components.

nearly all of the energy remains in the pri-
mary mode. Thus, the response to a forced
oscillation computed using just a single
mode with the reduced-frequency method
is often equivalent to a full time-dependent
simulation for an inviscid scheme.∗ This is
seen in Fig. 1, which shows the results of sim-
ulating the forced oscillation of a transonic
NACA 0012 airfoil using three methods:
a time-dependent simulation, and reduced-
frequency simulations retaining one and two
modes. After the initial transient of the
time-dependent simulation, all three simula-
tions are nearly identical, and all are in good
agreement with the experimental data, cap-
turing the hysteresis in the normal force vari-
ation. This indicates that Q contains just
a single mode at the forcing frequency, and
that including higher harmonics provides no
additional information.

The cost of the reduced-frequency approach scales as roughly N times the cost of a
static, steady-state solution, as each iteration requires N evaluations of R(Q). Further, it
is required to store N copies of each variable in the scheme, which can be prohibitive in
3-D, especially using commodity desktop systems. Thus, if it requires more than one or two
Fourier modes to characterize the unsteady behavior, the reduced-frequency approach rapidly
loses favor relative to solving the time-dependent equations, which require roughly an order
of magnitude greater effort than a steady-state simulation, but can support a continuum of
modes. A comparison of numerical timings for the reduced-frequency and time-dependent
methods are presented for 3-D simulations of a forced oscillation in the next section.

∗This does not imply that a viscous simulation automatically would show a wide energy band, or that
these higher modes must be resolved to provide an effective estimate of the response to a forced oscillation.
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As the oscillating NACA 0012 airfoil example demonstrates, simulating a forced oscilla-
tion overcomes the two major drawbacks of the reduced-frequency method: the frequency
response can be predicted a priori, greatly simplifying the solution procedure; and the re-
sponse can be accurately modeled using solely the primary frequency mode, leading to a large
gain in efficiency which offsets the loss of generality. These features are naturally exploited
in the examples in the next section to efficiently calculate dynamic stability derivatives using
a forced-oscillation motion.

4 Numerical Results

The calculation of dynamic damping derivatives using the reduced-frequency method
outlined above is demonstrated for both missile and aircraft configurations. First, the basics
of the method are outlined with the calculation of pitch damping for the Basic Finner missile
configuration, including an accounting of the computational cost. Next, damping derivatives
are computed for the Modified Basic Finner missile and the Standard Dynamic Model (SDM)
aircraft. These examples demonstrate the ability of the method to accurately compute
dynamic derivatives through the non-linear transonic and high-alpha regimes. Each of these
three configurations are established dynamic experimental test cases with a legacy of both
wind-tunnel (forced-oscillation and rotary-balance) and ballistic-range data. This tunnel
and range data is used to validate the reduced-frequency method for calculating dynamic
derivatives. A mesh refinement study was performed for each computed configuration using
the static, steady-state flow solver at nominal flight conditions.

4.1 Basic Finner Missile

10D

.94D

20o

D

D

0.08D

6.1D

φ

Figure 2: Basic Finner geometry is a cone-cylinder fuse-
lage with square fins in the + configuration. The cone
section has a 10◦ half-angle, and the center of mass is lo-
cated 6.1 diameters from the nose along the longitudinal
axis of the body.

Figure 3: Cutting-plane through the mesh
and sample pressure contours for the Basic
Finner. Pre-specified mesh adaptation regions
were placed around the nose and tail regions,
along with an outer box to capture the shock
wave emanating from the nose. The mesh con-
tains 500k cells. (M∞ = 1.96, α = 5◦, φ = 45◦).
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The Basic Finner configuration is a cone-cylinder fuselage with four square tail fins
(cf. Fig. 2). A cutting-plane through the mesh and a sample of the pressure contours around
the body from a static, steady-state simulation are presented in Fig. 3. The mesh con-
tains approximately 500k cells. Calculation of the pitch damping at M∞ = 1.96 and angles
of attack α = 0◦ − 20◦ demonstrates the utility and efficiency of the reduced-frequency
method for calculating dynamic stability derivatives. The body is forced to oscillate with a
simple sinusoidal function, α(t) = αo + αm sin (ωt), where all parameters are suitably non-
dimensionalized, and αo is the target angle of attack. The reduced-frequency method with a
single frequency mode (N = 3) is used to compute the response of the configuration to the
forced oscillation.

Method Single Axis Complete Set

Static 1 1
Reduced-Frequency 3.5 - 4 11 - 12
Time-Dependent 25 - 40 71 - 118

Table 1: Computational cost of the reduced-frequency and
time-dependent methods for calculating both static and dynamic
derivative information at a single flight condition. All values are
scaled relative to a single static, steady-state calculation.

The DC component computed
with the reduced-frequency method
provides another approximation for
the static, steady-state flowfield.
In the forced-oscillation technique
the DC component is equivalent
to the base state for the dynamic
derivatives in Eq. 4. The reduced-
frequency method is thus not in-
tended to simply augment static
calculations, but rather to replace
the static, steady-state flow solver for flight and configuration conditions where dynamic
information is desired. With a single reduced-frequency calculation both static and dynamic
derivative information is obtained. The computational cost of the reduced-frequency method
using a single frequency component is presented in Table 1. Rather than present direct CPU
timings, which are machine-dependent, the cost is presented relative to the cost of a static,
steady-state flow solution. The reduced-frequency method scales as roughly N times the cost
of a static, steady-state flow solution, with some overhead for the FFT calculations. There
is also a 10-25% overhead with the reduced-frequency method as the ALE residual operator
R(Q) is used, as opposed to the operator from the static flow solver. The ALE scheme uses a
general moving-body algorithm, rather than the simpler static Cartesian scheme. The compu-
tational cost for a general time-dependent method for computing the dynamic derivatives is
also presented for comparison. The time-dependent accounting assumes 100 timesteps/cycle
with a 2nd-order time-integration scheme, and an additional 25 timesteps to compute the
transient portion of the response. Each timestep requires 15-25 multigrid cycles to converge
2-3 orders of magnitude using the dual-time algorithm with an explicit Runge-Kutta inner
loop. The reduced-frequency method provides up to an order of magnitude improvement
in computational efficiency over the time-dependent method without loss of generality. A
complete set of damping derivatives can be calculated for a fraction of the cost of a single
time-dependent moving-body calculation.

Figure 4 presents the convergence of the density residual for the reduced-frequency calcu-
lation about the Basic Finner at M∞ = 1.96, α = 0.0◦ using the multigrid scheme and start-
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Figure 4: Convergence of the reduced-frequency
method for the Basic Finner oscillating in pitch
(M∞ = 1.96, α = 0◦, φ = 45◦).

up procedure. The DC component con-
verges approximately 3 orders of magnitude,
while the real and imaginary parts of the
frequency component converge 1.5 - 2 or-
ders of magnitude. The frequency com-
ponents are all initialized to zero. The
calculations in this work all use a piece-
wise linear spatial reconstruction along with
the gradient-limiter formulation outlined in
Berger et al.[27]. In a sense, the conver-
gence of the reduced-frequency scheme is
limited by the convergence of the static,
steady-state problem. When convergence of
the DC component stalls, the convergence
of the frequency components must stall as
well, since all of the components are coupled
through the temporal-frequency reconstruc-
tion/deconstruction process of the method.

The variation with angle of attack of the static pitching moment coefficient and the
dynamic pitch damping sum (Cmq + Cmα̇

) for the Basic Finner at M∞ = 1.96 is presented
in Fig. 5. The pitching-moment data computed with the static, steady-state flow solver
and obtained from the DC component of the reduced-frequency method is compared against
wind tunnel data[28]. The pitch damping sum is compared against wind tunnel[28] and range
data[29], along with a general time-dependent simulation. The pitching moment calculated
from the static, steady-state solver and the DC component are in excellent agreement. The
agreement between the computations and the wind tunnel data is good at the higher angles
of attack. Uselton et al.[28] note sting effects below α = 6◦ in the wind tunnel tests. Both
the non-zero moment and the better agreement between the pitch-damping computations
and the range data at α = 0◦ substantiates this observation. At α = 20◦ the wind tunnel
pitching moment begins to decrease due to flow separation, while the Euler computations do
not. This is consistent with the expected behavior of an inviscid simulation at high angles
of attack. The reduced-frequency and time-dependent predictions of the pitch damping sum
are in very good agreement, except at α = 20◦. At the higher angles of attack the non-linear
fluid dynamic effects increase and the response to a forced oscillation can develop higher
frequencies. These higher frequencies cannot be resolved with the reduced-frequency scheme.
Given this, the reduced-frequency calculations are still in good agreement with the wind
tunnel data at the higher angles of attack. The lower angles of attack are limited by the
sting effects noted above.

In the forced oscillation technique for determining dynamic derivatives, the amplitude
and frequency of the oscillation are chosen to provide an accurate estimate of the damping
behavior at the flight conditions of interest. The sensitivity of the reduced-frequency method
to the choice of the oscillation amplitude and frequency is presented in Fig. 6. The wind
tunnel data was obtained with a pitch amplitude of 1◦ and an oscillation frequency of 50 Hz.

9 of 17

American Institute of Aeronautics and Astronautics



0 5 10 15 20
Angle of Attack (deg.)

-6

-5

-4

-3

-2

-1

0

Pi
tc

hi
ng

 M
om

en
t C

oe
ff

ic
ie

nt
 (

C
m

)

Wind Tunnel (AEDC)
CFD - static, steady-state
CFD - DC Component

(a) Pitching Moment

0 5 10 15 20
Angle of Attack (deg.)

-500

-400

-300

-200

-100

0

Pi
tc

h 
D

am
pi

ng
 S

um
 (

C
m

q +
 C

m
α
)

Wind Tunnel (AEDC)
Range Data (NAVORD)
CFD - Time-Dependent
CFD - Reduced-Frequency (N = 3)

.

(b) Pitch Damping

Figure 5: Computed results for the pitch behavior of the Basic Finner configuration. Experimental data
from [28] and [29]. (M∞ = 1.96, φ = 45◦).

The reduced-frequency calculations are generally insensitive to amplitude and frequency
variation at the lower angles of attack. As the angle of attack increases so do the non-linear
fluid dynamic interactions, and the method is more sensitive to the choice of parameters. The
smaller amplitude variation is preferred to provide an estimate of the damping derivative local
to the flight condition of interest (cf. Uselton and Uselton[30]). Similarly, a high-frequency
oscillation can potentially obscure the damping properties. An oscillation frequency of 50 Hz
is used for the sub-scale models tested in this work, which roughly matches the frequency
used in the corresponding wind tunnel testing.
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Figure 6: Sensitivity to input parameters for the forced-oscillation method. Experimental data from [28]
and [29]. (M∞ = 1.96, φ = 45◦).
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4.2 Modified Basic Finner Missile
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Figure 7: Modified Basic Finner geometry is a 2.5
calibar tangent-ogive cylinder fuselage with trape-
zoidal fins in the + configuration. The center of
mass is located 4.82 diameters from the nose along
the longitudinal axis of the body.
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Figure 8: Variation of pitch damping with Mach
number for the Modified Basic Finner. Experimen-
tal data from [31]. (α = 0◦, φ = 0◦).

The Modified Basic Finner configuration is a 2.5 calibar tangent-ogive cylinder forebody
with 4 trapezoidal fins (cf. Fig. 7). The previous section presented the computed pitch-
damping variation with angle of attack at supersonic conditions for the Basic Finner. A
similar comparison is presented for the Modified Basic Finner in Fig. 8, this time holding
the angle of attack fixed (α = 0◦) and varying the Mach number through the transonic range.
Wind tunnel and range data[31] are included for validation of the reduced-frequency compu-
tations, along with computed results from a time-dependent scheme. The reduced-frequency
calculations are in good agreement with the test data, capturing the rise in damping through
Mach 1 along with the linear decay in the supersonic range. The reduced-frequency and
time-dependent calculations are nearly identical except at M∞ = 0.8, where high frequencies
appear which cannot be resolved with the reduced-frequency method. The reduced-frequency
method is, however, in better agreement with the test data at this Mach number indicating
that these high frequencies are spurious, possibly generated from the blunt aft end.

4.3 Standard Dynamics Model Aircraft

The Standard Dynamics Model (SDM) is a test configuration designed loosely on the F-
16 aircraft, including wing leading-edge extensions (LEX), horizontal and vertical stabilizers,
ventral fins, a canopy, and an inlet section (cf. Fig. 9). Further details on the geometry of the
configuration can be found in Beyers[32]. The computational resolution study resulted in a
mesh with 2.6M cells. A cutting-plane through the lateral symmetry plane of the mesh, along
with pressure contours is shown in Fig. 9. The SDM configuration has been tested extensively
at various facilities and flight conditions. In the current work, variations of the damping
coefficients through the transonic range at α = 0◦, and the variation with angle of attack
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(a) Cutting plane through mesh (b) Pressure contours (M∞ = 0.95, α = 0◦)

Figure 9: Standard Dynamics Model is a test configuration with trapezoidal wings and stabilizers, based
loosely on the F-16 aircraft. Further information on the geometry can be found in Beyers[32].

at M∞ = 0.6, are used to validate the reduced-frequency method. Comparisons against
calculations using the time-dependent method are only included for the pitch-damping sum
due to the high computational cost of the time-dependent method.
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Figure 10: Variation of pitch damping with Mach
number for the SDM at α = 0◦. Wind tunnel and
range data from Winchenbach et al.[33]

A complete set of damping derivatives
for the SDM at α = 0◦ is compared against
the wind tunnel and range data of Winchen-
bach et al.[33]. Figures 10-12 present the
pitch, yaw, and roll damping through the
transonic Mach number regime. For each
damping derivative, the comparison between
the reduced-frequency calculations and the
test data is very good, with the increase
in damping through Mach 1 clearly evi-
dent. Time-dependent simulation results
are included for the pitch-damping calcula-
tions, and there is little difference between
the reduced-frequency and time-dependent
methods except near Mach 1. As with the
Basic Finner and Modified Basic Finner, the
results from the reduced-frequency simula-
tions are in closer agreement with the avail-
able data than the time-dependent calculations.

The variation of pitch and roll damping with angle of attack for the SDM at Mach
0.6 is presented in Figs. 13 and 14. The computed results are compared against the wind
tunnel data of Beyers[32, 34]. This case is especially interesting for the current validation as
these are flight conditions which are expected to produce a wide energy-band response to a
forced oscillation. The roll damping is essentially constant through the angle of attack range,
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Figure 11: Variation of yaw damping with Mach
number for the SDM at α = 0◦. Wind tunnel and
range data from Winchenbach et al.[33]
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Figure 12: Variation of roll damping with Mach
number for the SDM at α = 0◦ . Wind tunnel data
from Winchenbach et al.[33]
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Figure 13: Variation of pitch damping with angle
of attack for the SDM at Mach 0.6. Wind tunnel
data from Beyers[34].
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Figure 14: Variation of roll damping with angle of
attack for the SDM at Mach 0.6. Wind tunnel data
from Beyers[32].

and the reduced-frequency calculations predict this behavior. The comparison of the pitch
damping with the wind tunnel data shows that the reduced-frequency calculations are in good
agreement, but do underpredict the reduction in pitch damping at α = 20◦ due to the flow
separation (as the angle of attack increases beyond α = 20◦ the LEX vortex lift increases
the pitching damping). The time-dependent scheme is a slight improvement, indicating
that the higher frequency modes being resolved are physical, but here the inviscid scheme
cannot capture all aspects of the true viscous flow. It would be an interesting experiment
to determine the performance of a Reynolds-averaged solver and turbulence model for these
same flight conditions.
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5 Summary and Future Work

A novel method of calculating dynamic stability derivatives using CFD methods has
been presented. This method uses a non-linear, reduced-frequency approach to simulate
the response to a forced oscillation using a single frequency component at the forcing fre-
quency. This reduced-frequency approach was implemented with an automated Cartesian
method, providing an efficient method for calculating damping derivatives under general
flight conditions for a configuration of arbitrary complexity. The method was validated for
reference missile and aircraft dynamic test configurations through the transonic and high-
alpha flight regimes. The agreement between the simulations and the available wind-tunnel
and ballistic-range data is very good. The reduced-frequency method provides nearly an
order of magnitude improvement in computational efficiency over general time-dependent
schemes.

The validation cases in this work do not include moving control surfaces, or inlet and
exhaust conditions, both of which are required for an accurate analysis of a flight control
system. Efficient methods of incorporating moving control surfaces with automated parame-
ter studies using the current Cartesian approach have been demonstrated[21]. A method of
simulating inlet and exhaust conditions has also been validated[35]. Along with the current
work, this provides an automated, efficient infrastructure for determining the aerodynamic
performance of a vehicle at flight operating conditions. With this aerodynamic database
in hand, a preliminary design or mission analysis can quickly be evaluated. The develop-
ment of novel control system concepts and optimization of controllers for specific mission
requirements have already been demonstrated with this system[21].

The validation cases presented assume a linear damping model. The reduced-frequency
approach will converge for conditions which lead to non-linear damping, however, it is cur-
rently not possible to discriminate between a calculation in the linear or non-linear damping
regimes. It is not clear if it is appropriate to assume that a calculation with the reduced-
frequency method, which assumes a linear damping modeled, is a linearized, leading-order
approximation to the non-linear damping. Further research into calculating the response to
non-linear damping with a reduced-frequency approach is warranted.

All of the dynamic derivative calculations presented use the forced-oscillation technique.
Other experimental methods for determining the dynamic response of a configuration are the
rotary-balance and body roll axis tests. These tests also produce periodic solutions, however
in many cases the frequency is coupled to the geometry. For example, a missile with two ca-
nards and three tail fins will have two frequency components in a roll-axis simulation, while
other geometric configurations will differ. This coupling makes it difficult to develop com-
putational methods which are fully automated. Further, these types of tests often produce
average coefficients, e.g. roll-averaged roll damping, as opposed to the point values produced
with the forced-oscillation technique. Examining methods of incorporating general periodic
motions with the reduced-frequency technique for calculating dynamic derivatives is thus
left as a topic for future work.
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